Journal of Neurological Sciences (Turkish) 2017 , Vol 34 , Num 1
A novel Convolutional Neural Network Model Based on Voxel-based Morphometry of Imaging Data in Predicting the Prognosis of Patients with Mild Cognitive Impairment
Füsun Çitak-ER1,Dionysis GOULARAS2,Burcu ORMECİ, the Alzheimer's Disease Neuroimaging Initiative*3
1Yeditepe University, Department of Biotechnology, Istanbul, Turkey
2Yeditepe University, Department of Computer Engineering, Istanbul, Turkey
3Yeditepe University Hospital, Department of Neurology, Istanbul, Turkey
Objective: Nowadays, it is of great interest to identify neuroimaging biomarkers for the early detection of Alzheimer's disease (AD). It is considered that approximately half of patients with a diagnosis of mild cognitive impairment (MCI) eventually develop Alzheimer's disease, and the other half remain stable. In this context, a novel convolutional neural network (CNN) based on voxel-based morphometric analysis is proposed to predict the prognosis of patients with MCI using their baseline structural magnetic resonance (MR) images.

Methods: Two groups of patients were identified among 305 patients with a diagnosis of MCI, those who developed Alzheimer's disease during their follow-up (n=140), and those who remained stable in the MCI state (n=165). The baseline structural MR images of the patients were used for training and evaluating the proposed prediction model. Voxel-based morphometry generated from the baseline structural MR images was used to obtain significant volume of interests (VOIs) related with gray matter damage. Then, a convolutional neural network was trained to extract prognostic features from MR images using a set of convolutional feature detectors acquired by the training of a patch-based autoencoder.

Results: This work achieved an accuracy of 78.7%, slightly superior (more than 4%) to a reference study, for predicting the risk of developing Alzheimer's disease for patients with MCI.

Conclusion: The results of this study show that the use of a convolutional neural network using significant topographic regions of the brain is successful in predicting the risk of developing Alzheimer's disease for patients with MCI. Keywords : Convolutional Neural Network, Alzheimer